

GCE

Chemistry (Salters)

Advanced GCE A2 7887

Advanced Subsidiary GCE AS 3887

Mark Schemes for the Units

January 2008

3887/7887/MS/R/08J

OCR (Oxford Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annersley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry (Salters) (7887)

Advanced Subsidiary GCE Chemistry (Salters) (3887)

MARK SCHEME ON THE UNITS

Unit/Con	tent	Page
2848	Chemistry of Natural Resources	1
2849	Chemistry of Materials	6
2850	Chemistry for Life	11
2854	Chemistry by Design	15
Grade Th	resholds	20

2848 Chemistry of Natural Resources

Mark Scheme	Unit Code 2848	Session Year Version January 2008		Version		
Page 1 of 5	Fina					
1 (a) (i)	CaCO ₃ → CaO + C	O ₂ ignore ss		1		
(ii)	(ii) SiO ₂ giant covalent/ network solid/ lattice/ whole structure held together by covalent bonds/ correct diagram (1); ignore "giant molecule" CO ₂ simple molecular/ molecules/ O=C=O (AW) (1); ignore "covalent" Comparison of imf: Weaker intermolecular forces in CO ₂ (can be named and can be abbreviated)/ less energy needed to separate molecules/ bonds in SiO ₂ are stronger than CO ₂ imfs (1) mention of imf for SiO ₂ is CON to third mark					
(b)	395 x 100 / 1 000 0	00 = 0.0395 (%) (1)		1		
(c) (i)	right/ more products Increased CO ₂ (aq) right/ more products here or in introducto H ⁺ concentration/ ac	Increased CO ₂ (g) moves equilibrium (position) in equation 1.1 to the right/ more products (1); Increased CO ₂ (aq) moves equilibrium (position) in equation 1.2 to the right/ more products (1); Word "equilibrium" must appear at least once here or in introductory sentence to score any of these marks. H ⁺ concentration/ acidity increases (1) Allow "more H ⁺ " Just one equilibrium described – max (2).				
(c) (ii)		One of: Death/ reduced number of/ harm to sea creatures/ plants (1); Dissolving/ removal of seabed minerals (1)				
(d)	radiations abs	ir* s the <u>bonds</u> to vibrate sorbed;	,			
	This is turned molecules rad *allow: long-wave o	elecules means more into kinetic energy waliate ir which warms but in the low frequency radiates, spelling (one erroll)	hich raises the tempe Earth/atmosphere <i>tion</i>	erature/		
(e) (i)		s/ alternative power s plant more trees (AV		sis (1) 2		
(ii)	energy/ compression	e of the gas would ne on (AW)/ nental consequences		(AW)/		
				17		

Mark Scheme Page 2 of 5		me	Unit Code Session Year Versi 2848 January 2008 Fina					
2	(a)		Alkene (1); Alcohol/ hydroxy(I) (1)	<u> </u>		2	
		(ii)	C ₁₆ H ₃₀ O	7			1	
	(b)	(i)	Three (1)				1	
		(ii)	One from:					
	• •			OH OH				
			Correct orientation of OH); must be adjace skeletal Completely correct (of cis/ trans (for trans ent(1) allow this mark (1);	OH -cis this must be relationship point if structures	tive to		
2	(c)	(i)						
			-c"				1	
			Н Н					
		(ii)	(Sulphuric) acid (1);	dichromate/ correct NOT nitric or carbox		rmulae	3	
		(iii)	Heat (provided dichi Oxidation (1)	ioniale is given) (1)			1	
	(d)		(Partially) positively negative charge/ ele	charged/ electron de ectrons (AW) (1); a pair of electrons (1	-	eted to	2	
		(ii)	bondo by decopting	a pair or olocitorio (1	/			
			Curly arrow from do somewhere in gap Curly arrow from bo	C $Br^{\delta+}$ $Br^{\delta-}$	nust start at double bor		3	
-		(iii)	half heads Carbocation (1)				1	
L		\···/	Accept carbonium ic	on				
	_						17	

Mark Scheme Page 3 of 5		Unit Code 2848	Session January	Year 2008	Version Final
3 (a)	(i)	H C— H (or different order) (sone error (1)	H H H H	— с —— СООН	2
	(ii)	Copolymer (1)			1
(b)		Lone pair on rele separately* Partial charges on re	corresponding hydrogevant oxygen, point elevant atoms (1) mana hydrogen and an oxygen an oxygen and an oxygen an oxygen and an oxygen an oxygen and an oxygen and an oxygen and an oxygen and an oxygen an oxygen and an oxygen and an oxygen and an oxygen and an oxygen an oxygen an oxygen and an oxygen an oxygen an	ted along bond (1 rk separately*	
(c)		Strong (hydrogen) bidea of less relative	onds/imf (1); movement of chains,		om 2
(d)		Sodium/ potassium Accept any soluble		t formula	1
(e)			s when heated/ warm		w melting 1
(f)	(i)	Propene (1) ALLOW	•		1
	(ii)	$M_{\rm r}$ of repeat unit = 7 $n = 28000 / M_{\rm r}$ (= 4)			2
	(iii)		le–) induced dipole (d	or reversed, NOT	1
	(iv)	Flexible/ low melting melts above room to in water(1)	point/ stretches/ the emp (NOT "solid")/ wa references to boiling et answer to (iii)	aterproof/ insulator/ in	soluble
					15

Mark Scheme Page 4 of 5		Unit Code Session Year Version 2848 January 2008 Final				
	(i)	4.1 (1); (or equation sulphur/ S (1) NOT	 allow slight copying CuS 	g error)	2	
	(ii) 4.2 (1); (or equation – allow slight copying error) (2)NH ₄ ⁺ / ammonium ion (1); It has donated a proton/ H ⁺ ion (1) mark separately Allow Lewis acids in 4.3 as follows: 4.3 (only scores if one answer below is correct) Cu ²⁺ (1) electron pair acceptor (1)					
(b)	(i)	sulphur dioxide diss	olves to form an acid	(1) ALLOW acid rain health/ buildings (1);		
	(ii)	Fit 'absorbers'/ scrul gases/ making sulph		to remove SO ₂ from	waste 1	
(c)	(i)	$Cu^{2+} + Zn \rightarrow Zn^{2+} +$	Cu <i>ignore ss</i> zinc ion (1); <i>ALLOW</i> ($Cu^{2+} + 2e \rightarrow Cu \text{ for } 1$	mark 2	
(ii)		3d ¹⁰ 4s ¹ or reversed 3d ⁹ 4s ² (or reversed)	(2);		2	
(d)	(i)	200 x 0.0500 /1000 200 x 0.05(00) or 20	= 0.01(0) (2);		2	
(ii)						
					17	

Mark Scheme Page 5 of 5		Unit Code 2848	Session January	Year 2008	Version Final			
5 (a)	: -	Bromoalkanes/ halo	genoalkanes/ haloal	kanes (1)	1			
(b)		crude oil/ natural ga	s/ (sea)water/ brine ((1)	1			
(c)	(i)	completely correct (formulae correct (1) ALLOW $2Br^- \rightarrow Br_2 + 2e$ for 1 mark (or minus ectrons)					
	(ii)	Oxidised because of	(1) (1) for 4+, 6+ or 4, 6. kidised because oxidation state has increased (1) mark separately NORE loss of electrons					
	(iii)	mpt	07/80 (1); 9 x 10 ⁻⁴ ALLOW 8.75 x 10 ⁻⁴ / 8.8 x 10 ⁻⁴ mol dm ⁻³ (1) <i>no ecf from 1st</i> pt					
	(iv)	0.81/ Answer from (1			
	(v)	Red/brown/ red-bro	wn (1)		1			
(d)	(i)	CH₃OH + HBr (1) →	• CH₃Br + H₂O (1) <i>all</i>	ow BrH etc	2			
	(ii)	Nucleophilic (1); Substitution (1)			2			
(e)		Iower activation enthat The activation enthat a reaction (1); mark more effective collis	alpy is the energy ned separately ions/ more collisions lpy/ more successful	eded for a <u>collision</u> to will occur with great	o result in ter than			
(f)		Up to four from: CFCs are not broke CFCs are broken do by high energy/ free producing chlorine a that catalyse ozone plus up to two from C-Br bond is weake so can be broken in troposphere (1); or	n down/ unreactive in bown in the stratospher in th	ere (AW) (1); 1); or equation plied	5			
		so can be broken in troposphere (1) QWC: Two sentenc correctly: Troposphere/ strato	tains C–H bonds that the troposphere/ mo es, logical, at least tw sphere, uv, radiation notodissociation, radi	vo terms from this lis	1 st, used catalytic,			

2849 Chemistry of Materials

Mark Scheme Pages 1 of 5	Unit Code 2849	Session Jan	Year 2008	FIN	IAL	
Question	Expected answers				Marks	
1 (a)		hen in contact with a		V/	1	
(b)	0		(1).		1	
(c) (i)	(Moderately) conce sulphuric acid (1); (Heat under) reflux	ntrated hydrochloric a		entrated	2	
(ii)	1 mark for each stru	OH OCTUTE	ОН		2	
(iii)	Dissolve solid in minimum amount of (1); hot ethanol (1); leave to cool/evaporate (1); filter off crystals (1); wash with cold ethanol (1); dry (1);					
(d)	Cis structures will ma ORA AW (1); so packing will be les intermolecular forces so m.pt. is lower in cis	QWC (1). Cis structures will make chains less regular/chains in Cis-Trans further apart ORA AW (1); so packing will be less regular, hence less crystalline ORA AW (1); intermolecular forces will be weaker (1); so m.pt. is lower in cis-trans mixture ORA (1).				
(e) (i)	Hydroxyl/alcohol;		1		1	
(ii)	peak at about 3300 (a bond (1).	any suitable range) cm	' /wavenumber indicate	es OH	1	
(f)	Add other monomers add plasticisers (1);	to the chain/copolymer cis bonds to lower m.p		metrical	1	
			To	otal mark	19	

Mark Scheme Pages 2 of 5		Unit Code 2849	Session Jan	Year 2008	FIN	IAL	
Question Expected answers						Marks	
2 (a)		Phenol [allow hydrox (carboxyl) (1).	y(l)] (1); amine (amir	no) (1); carboxylic acid	t	3	
(b)	(i)	yellow-orange (1);	enylalanine: yellow/orange colour (remains) allow yellow-brown or low-orange (1); osine: purple (solution) (1).				
	(ii)	$\begin{array}{c c} & \text{NH}_2 \\ \hline \\ \text{CH}_2 - \text{CH} \\ \hline \\ \hline \\ \end{array}$	Na ^{+ -} O		(1).	2	
	(iii) Contains a basic/amine group and acidic/carboxylic acid group (1); and can transfer a proton from the acidic/carboxylic acid group to the basic/amine group allow transfer via water (1).					2	
(c)		HO—CH ₂ - Correct amide link (1	C=O OH -); correct structure (1			2	
(d)	(i)	•	not be superimpose	centre <i>allow chiral ca</i> d/have different prope	` '	2	
	(ii)	Active sites in enzymonly one isomer has allow 1 mark for activ	nes have specific shat the correct shape to we sites are specific for	fit AW(1); or one isomer'.		2	
	(iii)	Change of pH changes the nature of the amine and acid groups in amino acids/proteins / changes hydrogen bonding in enzymes AW (1); So changes interactions/hydrogen bonding between enzyme and substrate/alters tertiary structure/destroys or changes shape of active site/ substrate can no longer bind AW (1).				2	
	(iv)	wrong shape to fit ex site becomes blocked strongly)/substrate ca	substrate AW/methyl actly / Metyrosine ca d (because of no rea annot bind to active s	group replaces hydron fit into the active sit ction/held in	gen so	2	
	(i)	Rate = k (1) x [tyrosin	ne][enzyme] (1).			2	
-	(ii)	Mol ⁻¹ dm ³ s ⁻¹ <i>ecf</i> (1).			4 m l m r =1	1	
				То	tal mark	22	

Mark Scheme Page 3 of 5	Unit Code 2849	Session Jan	Year 2008	FINAL	
Question	Expected answers			Marks	
3 (a)	0.78 V (1).			1	
3 (b)	EITHER: People using the ancient iron-copper cell did not do their experiments under standard conditions including an example AW (1); Electrode potentials/E ⁰ _{cell} will be different under different conditions AW (1). OR Solution is acid not metal ions / solution contains acid AW (1); Different reactions take place at the electrodes/ hence electrode potentials will be different AW (1);				
3 (c)	Copper is the negative electron	de = FALSE ;		2	
	Copper atoms are oxidised in t	he reaction = FALSI	Ξ;		
	Electrons move through the wi	re from the copper e	lectrode = FALSE;		
	Electrons do not move through	the solution = TRUI	≣;		
	all four correct (2);				
	any two correct (1).				
3 (d)	Hydrogen electrode (gas, acid, Pt) (1); voltmeter connected to electrodes (1); salt bridge dipping in both solutions (include Cu ²⁺ half-cell) and labelled (1); standard conditions, two from: 1 mol dm ⁻³ , 298 K, 1 atmosphere (1).				
3 (e)	H ₂ (g) + Cu ²⁺ (aq) \rightarrow 2H ⁺ (aq) + Cu(s) Species correct (1); balanced and direction correct <i>ignore electrons not cancelled</i> (1); state symbols correct (1).				
3 (f)	Yes, Cu is a stronger reducing	agent than Fe ²⁺ ion	s since Cu has more	2	
	negative electrode potential (2)	AW ORA			
	1 mark only if either redox pro	perty (in terms of red	dox words or electro	n	
	transfer) or electrode potential	data is given in the	answer.		
3 (g) (i)	H H H H H H H H H H H H H H H H H H H	H——C— H	О—Н	2	
	1 mark each				
	DO NOT ALLOW -OH.				
3 (g) (ii)	Acidity is caused by loss of pro (strength of acid/equilibrium po COMPARISON MARK (1); anion from ethanoic acid can d stable (1); C ₂ H ₅ O ⁻ is not stabilised/charge	sition) depends on selocalise the negative	stability of anion AW we charge and is mo	re	
			Tot	al mark 20	

Mark Scheme Page 4of 5	Unit Code 2849						
Question	Expected answers	Expected answers					
4 (a)	Pentyl (1) ethanoate	(1)		2			
(b) (i)	At equilibrium [P] = [$(P)^2 = 4.15 \times (1.06) \times (P) = 2.16 \text{ mol dm}^{-3} \text{ a}$	$K_c = [\mathbf{P}]$.[water]/[acid].[alcohol] (1); At equilibrium $[\mathbf{P}] = [\text{water}]$ may be inferred from $[\mathbf{P}] = \sqrt{\text{number (1)}}$; $\mathbf{P}]^2 = 4.15 \text{ x (1.06) x (1.06) (1) ecf if incorrect } K_c \text{ expression written;}$ $\mathbf{P}] = 2.16 \text{ mol dm}^{-3}$ answer must be to 3 sfs ecf (1). If water is missed out in equation 4.66 gets 2 marks.					
(ii)	concentrations of real increases (1); K_c is unchanged (1); K_c does not change veratio of concentration	Product/ester lost (1); concentrations of reactants will be less / concentration of water increases (1); K_c is unchanged (1); K_c does not change with concentration/only changes with temperature/ratio of concentrations remain the same AW (1); allow 1 mark for loss of volatile component causing an increase in					
(iii)	Conc. sulphuric acida Accept conc. hydroci	_		1			
(c)	Peak at 0.9 shows it OR Q because it alone	has 6 methyl Hs attac can give a chemica se one proton AW (1	l shift at 1.5 (1)). 2			
(d)	Compo 1.4 3 CH ₂ CI CH ₂ 1.4 2 appropriate groups 1 mark each. Allow 3.6 instead of 3	und P O .7 H ₂ O CH ₃ 2.2 of protons with corre	compound Q 3.7 CH ₂ 0 1.4 ct chemical shifts (2);	CH ₃ 2.2			
			To	tal Mark 15			

Mark Scheme Page 5 of 5		Unit Code 2849	Session Jan	Year 2008	FINA	AL
Questic		Expected answers			•	Marks
5 (a)	Corrosion resistance/stainless/hard/lustrous AW / high strength / hard AW (1).				1	
(b)	(i)	\ /	lagnesium sulphide/MgS (1).			
	(ii)	Coolant (oxygen blo	ow is very exothermic	c)/resists, reduces or	prevents	1
	(iii)	Any 2 from: carbon,	phosphorus, manga	nese, silicon (1).		1
(c)	(i)	Ni Ni ²⁺ Correct number of ecorrect arrangement				2
	(ii)	$3Ni + 2NO_3^- + 8H$ correct reactants ar balanced (1).		+ 4H ₂ O		2
(d)	(i)		Ligands cause energy levels to split (1); colour depends on difference between energy levels AW (1).			
	(ii)	[Ni(H2O)6]2+ = 6 (1); [Ni(dimethylglyoxim	$e)_2]^{2+}=4(1).$			2
	(iii)	$[Ni(H_2O)_6]^{2+}$ = octah [Ni(dimethylglyoxim	edral (1); e) ₂] ²⁺ = tetrahedral / (square) planar (1).		2
					Total mark	14

2850 Chemistry for Life

Mark Scheme Page 1 of 4	Unit Code Session Year V 2850 January 2008						
1 (a)	Combustion (AW) (of fuel)(1) Incomplete/ in limited supply of air or oxygen(1); if linked to CO or CO ₂ and <u>no</u> mention of Czero marks incomplete combustion on own = 2 NOT <u>unburnt</u> fuel						
(b) (i)	benzene/any named	aromatic <u>hydrocarbon</u>			1		
(ii)	react/combine/join/bu engine	ligh temp/heat of fire (1); caused nitrogen and oxygen to eact/combine/join/burn/combust/oxidize (1); NOT fuse Ignore refs to engine One or other or both from air/atmosphere (1)					
(c) (i)	ethers/alkoxyalkanes		,		1		
(ii)	104-110° (1);(electro	104-110° (1);(electrons) two lone pairs and two bonding pairs/ four regions/four pairs (1); around the central atom/O atom (1); (electron) (pairs)/groups/regions repel (1); to minimize repulsion/as far as possible (1);					
(iii)	1401 Bollas Tepel 14	1					
	minimum	CH ₃ CH ₃ -O-C-CH ₃ CH ₃					
(iv)	(iv) $(5 \times -394) + (6 \times -286)$ (1); process i.e. products – reactants(needs numbers) i.e3686 –(-283) (1); value with sign (1); -3403 scores all ecf's as appropriate (+3403 = 2marks; 3403 = 1 mark if shown without working)						
(d)	· · · · · · · · · · · · · · · · · · ·				2		
					Total = 18		

Mark Scheme Page 2 of 4	Unit Code 2850	Session January	Year 2008	Vers Fin					
2 (a) (i)	lithium carbonate				1				
(ii)	Any two from formula mass for LiC possible/AW sodium hydroxide de can carry more mole NOT LiOH is more co	2							
(b) (i)	LiH(s) + $H_2O(I) \rightarrow$ (1); state symbols co	LiOH/LiHO/Li(OH)		on correct	2				
(ii)	[Li] ⁺ [* H] ⁻ no electro charges (1); correct structure and marks	ns (allow 2) on Li (1	1); two different on H		3				
(iii)					2				
(,	sub-atomic par	atomic pa	articles in		_				
		1) ()						
	electron	neutron(s)(1) 0 electron 2(1)							
(iv)	state symbols as above		ct(1) tron. No ss on electror	ı	2				
(v)	rem allo e	ction(7 der to los	nearer nucleus/smalle e/more energy needed ist be compara ttraction		4				
(c) (i)	cation/po-itive res +	ositive metal ions(1); <u>delocalized/sea</u> + OT protons/lithium +	ctrons (1);	2				
	e ⁻	e e e	no mark for the lattice	this time so					
		e¯	a minimum of						
	e ⁻								
(ii)	electrons free to move	flow/transfer/ throug	h structure NOT 'floatir	ng electrons'	1				
					Total =19				

	ark eme 3 of 4	Unit Code 2850	Session January	Year 2008	Version Final
3 (a	i) (i)	$\begin{array}{c} 2B(\mathbf{s}) \ + \ 3H_2O(\mathbf{g}) \ \to \ B \\ states(1); \end{array}$	$_2O_3(\mathbf{s}) + 3H_2(\mathbf{g})$ balance	ing, allow multiples(1);	2
	(ii)		+ 2B (not B ₂) reactants agnesium oxide and boro		2
(b) (i)	moles of $H_2 = 5000/2(25)$	500) (1);		1
	(ii)		666.6) this mark for use of eqn x 11(18300)(1); \rightarrow 20		io 3
	(iii) 2500 x 286 (715000 kJ) ecf				
(c	;) (i)		+ 2CO₂ formulae (1); boroviding reactants correge NO + CO → N		
	(ii)	4 sed			
(ii	ii)	only 1 mark in either p No CO (1); BOD H ₂ O will not react with NO	won't react with NO	rammatic acceptable) Not unreacted hydroge	n 1
	(d) Advantages No CO/C emissions/only produces water/no pollutants (if qualified)/less pollutants/renewable/high energy density/plentiful supply/less use of fossil fuels(AW) (1); Not NO reduced Disadvantages storage issues (BOD liquefied)/delivery system (1) NOT NO not reduced				
(e	same group (of PT)/same outer electron structure(1); reacts in a similar way/similar properties AW (1); in same period therefore reacts in similar way CONzero.				
					Total = 20

Mar Sche		Unit Code Session Year 2850 January 2008			Version		
Page 4	of 4						
4 (a)	(i)	alkane(s) NOT 'linear	' alkanes		1		
	(ii) 3-ethyl-2-methylheptane heptane (NOT cycloheptane)(1); all correct(ignore dashes and commas) (1);				2		
	(iii) A and C only(1); same molecular formulae/same number and type of atoms/same atoms(1); different structural/structure/arrangement of atoms(1); NOT different shape or chemical formulae						
	(iv) $C_{15}H_{32}$ carbons(1); hydrogens(1);						
	(v)	B (1);			1		
(b)	(i)	D			1		
	(ii)	A or/and C (A and D	or A,C and D CON)		1		
(c)			ower generated/reduce oignition (1); NOT <u>no</u> o	s/lowers tendency(1); r prevents auto ignition.	2		
(d)	(d) (i) 1000/170(1); x 8062 ecf on some attempt to calculate moles (BOD)(1); sig figs(1) only scores if some working; 47,000 scores all three. Ignore minus sign						
	(ii) 108000/47000 = 2.3(1) ecf from (i)						
	(iii)	ensures complete con	nbustion;		1		
					Total = 18		

2854 Chemistry by Design

Mar Sche Page 1	me	Unit Code 2854	Session January	Year 2008	Versio Fina		
1 (a)	(i)	$CH_3OH + 0.5O_2 =$	HCHO + H ₂ O or do	ubled		1	
(ii) H—C H (b) (i) greater yield (1); equilibrium (position) moves to oppose change/ moves in						1	
(b)	(i)		<u>uilibrium</u> (position) mo n (1) <i>mark separatel</i> y		e/ moves in	2	
(ii) smaller yield (1); equilibrium (position) moves in direction of fewer molecules (1) mark separately						2	
(c)	(i)	pH ₂ (x) pHCHO/pCH ₃ OH (1) atm (1) allow square brackets IF "p" as well					
	(ii)		H_2 (or substituted) (1) cf from first marking μ n (c)(i) scores 2.		swer to c i	2	
(d)	(i)	NaBH ₄ or correct na	me; otherwise ignore	name		1	
	(ii)	nucleophilic (1); add	dition (1)			2	
(e)	(e) 15 - CH ₃ ⁺ 28 - CO ⁺ 29 - CHO ⁺ (accept COH ⁺) 30 - CH ₂ O ⁺ 31 - CH ₃ O ⁺ 32 - CH ₄ O ⁺ / CH ₃ OH ⁺ 33 - C ¹³ H ₄ O ⁺ / C ¹³ H ₃ OH ⁺ Allow C,H,O in any order for all any two: (1) each; + sign (1) award if ONE ion correct					3	
						16	

Mar Scher Page 2	me	Unit Code 2854	Session January	Year 2008	Vers Fin			
Questic		Expected Answers	L	L	I	Marks		
2 (a)	(i)		ice pre-ignition/raise on mbustion (AW)/ make in bustion			1		
	(ii)	ether				1		
(b)		$mol dm^{-3} (4.5 \times 10^{-8})$	1) x 10 ⁷ :1/ 1: 1(.1) x 10 ⁷ Allow 1: 9/ 9.09/9.1 x 10 ⁻⁸ / 9/ 9.09/9.1 x ow ecf					
(c)	(i) structural/functional group					1		
	(ii)		2); ignore dashes and g nethylpropan-1-ol scor		er or both	2		
	(iii)	induced dipole <i>allow</i> compound A has hyd because it has an O-	nent dipole–permanent dipole /instantaneous dipole- ow abreviations; hydrogen bonding; O–H group/ is an alcohol; re <u>stronger</u> (than permanent dipole–permanent dipole/i-d–i-					
	(iv)	heat/ reflux depends (1); turns green (1); compound A is a terti	ssium dichromate/dichron dichromate (name of ary alcohol or descript other oxidation number	or formula) being ment ion (1)		4		
(d)	(i)	alkene				1		
	(ii)	compound B CH ₃ CH ₃ CH ₂ H CH ₃ C				4		
	(iii)	mark for the molecule concerned addition (1) electrophilic (1)						
	(iv)	H ⁺ (1); recycled/ goes in at start, out at end (AW) (1) <i>mark separately</i>						
(e)	, , , , , , , , , , , , , , , , , , , ,				30			
						3 U		

Mark Sche Page	eme		Unit Code 2854	Session January	Year 2008	Version Final		
3 ((a)	(i)	nitrogen/ air(1); met	hane/ natural gas (1)	; water/steam (1)	3		
		(ii)	$NH_3 + HNO_3 \rightarrow N$	H ₄ NO ₃		1		
		(iii)	$HNO_3 \rightarrow H^+ + NO$	$_{3}^{-}$ or with H ₂ O to form	n H₃O⁺	1		
((b)		H +			2		
			H : N + H					
				ctron pairs (1);				
				s sign (somewhere) (
		(ii)		on pairs/ bonds/ areas t as far away from ea				
		(iii)		ions attract water mo	olecules/ <u>ions</u> are hyd	Irated 4		
		(1); conducts electricity <u>in solution</u> (1); ions free to <u>move</u> (1) allow second mark if "conducts when molten" given						
			QWC: written in sen or grammatical error	tences (at least two) of (see notes)	only one spelling, pu	nctuation		
((c)		$NH_4NO_3 = 80 (1) \%$	$= 28 \times 100/80 = 35\%$	% ecf (1)	2		
((d)		two from: nitrogen/nitrates/ami high % nitrogen; NH	monia/ammonium neo 4 [†] held by clay/soil	eded by plants (AW);	soluble; 2		
((e)	(i)	equilibrium sign ALL completion	OW some description	of reaction not goin	g to 1		
		(ii)	$[NH_3] [H^+]/[NH_4^+] $	completely correct		1		
		(iii)	$[H^{+}] = [NH_{4}^{+}] $ stated $[H^{+}] = 2.37/2.4 \times 10^{-1}$	or implied (1) 1 ⁻⁶ (1);		2		
		(iv)		cf from some calcula	ted value in 3 e iii	1		
((f)	(i)	any soluble ammonium salt (1) ammonia (solution) / ammonium hydroxide/ NH ₃ / NH ₃ (aq) (1)					
	(ii) $[NH_4^+] = [NH_3] \text{ so } [H^+] = K_a (1); \text{ pH} = (-\log(5.6 \times 10^{-10}) = 9.25/9.3 \ (If (NH_4)_2SO_4 \text{ used in 3fi, then allow this answer or } [H^+] = 2K_a; \text{ pH} = 8.95/9.0)$							
						28		

	Marl Scher ge 4	ne	Unit Code 2854	Session January	Year 2008	Versi Fina	
4	(a)	(i)	nitrobenzene allow 1	1-nitrobenzene/ nitro-l	benzene/ nitro benze	ne	1
		(ii)		(1); conc nitric acid (´ ned once – nitric acid (ux is "CON"			3
		(iii)	Sn + c,HCl reflux (1)			1
		(iv)		H ₂ hexane formula (<i>1</i> Irocarbon producing H		ı for	2
	(b)	(i)	AICl ₃ (1); anhydrous	s/reflux (1)			2
		(ii)	(neutral) iron(III) (chi separately, ignore st	loride) (1); purple/ pir farting colour	nk/ mauve/ violet (1)	mark	2
		(iii)	use of ratio 78/94 (e	ither way up) (1) 87%	(1) ecf		2
	(c)	(i)	alkaline solution (1); below 5 °C (1)				2
		(ii)	$ \begin{array}{c} $	ОН	empletely correct (2);	one	2
	(d)			′ lone pair on nitrogen / NH₂ group	(involved in delocalis	sation)/	1
	more delocalisation / NH₂ group (e) benzene absorbs uv/ does not absorb visible (1); four from: dye absorbs in visible; transmits complementary colour; electrons excited/ move to higher energy levels; more delocalisation in dye/ longer chromophore; less energy needed for excitation/ energy levels closer; (Δ)E = hv/ frequency is proportional to energy change; max two ex four for emission of light QWC: Logical, with three words from list below used correctly: (2) Logical with two words from list below used correctly (1) absorbs; transmits; visible; uv; electrons excited; delocalisation; chromophore; (electron) energy level, complementary					2	
							25

Mark Schem Page 5	_	Unit Code 2854	Session January	Year 2008	Version Final
5 (a)	01.0	H O	ne with 3 O atomed at the core		
(b)	(i)	instantaneous (dipole) - induced dipo	le (1) <i>only</i>		1
	(ii)	Mixed system has more disorder / more ways of arranging the particles/	molecules (1);		1
(c)	(i)	similar intermolecular forces/ id – id (a both non-polar	allow abbreviatio	ons here)/	1
	(ii)	three from: high K_{ow} means more pesticide in oct the damage to the insect is done in the pesticide can pass from (spraying) so small amounts needed;	ne fatty layers (A plution into insec	W); t;	3
(d)	(i)	RCOO ⁻ (1) ignore Na ⁺ NOT O–Na R both	COH (1) or more	displaye	d for 2
	(ii)	R, H, $\delta^ \delta^+$ H 0 —H····Q δ^- R, H bent water with hydrogen bond to O, $5di(1)$; lone pair along hydrogen bond (1); partial charges (allow just one δ – on 0 O–H–O straight (1) allow last three for	one oxygen)(1);		rom 4
	(iii)	X (not necessarily "-") surrounded by water molecules bent and correctly al +ve organic ion(1);			
(e)	(i)	 A – lattice enthalpy (1); B – sum of depends on next(1); enthalpy(ies) of hydration/solvation C – enthalpy (change) of solution (1) allow symbols, eg ΔH_{LE} "enthalpy" mission 		er first om	ission 4
	(ii)	+3 (1)			1
					21

Grade Thresholds

Advanced GCE Chemistry (Salters) (3887/7887) January 2008 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	а	b	С	d	е	u
2848	Raw	90	70	62	54	46	39	0
	UMS	120	96	84	72	60	48	0
2849	Raw	90	68	60	53	46	39	0
	UMS	90	72	63	54	45	36	0
2850	Raw	75	57	50	43	37	31	0
	UMS	90	72	63	54	45	36	0
2854	Raw	120	84	75	66	58	50	0
	UMS	120	96	84	72	60	48	0
2855	Raw	90	76	68	60	52	44	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3887	300	240	210	180	150	120	0
7887	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	В	С	D	E	U	Total Number of Candidates
3887	12.2	35.3	61.1	82.3	96.4	100	569
7887	15.0	48.8	75.0	92.5	98.8	100	84

653 candidates aggregated this series

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums_results.html

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

14 - 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

