## GCE

# Chemistry (Salters) 

## Advanced GCE A2 7887

Advanced Subsidiary GCE AS 3887

## Mark Schemes for the Units

## January 2008

OCR (Oxford Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2008
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

## CONTENTS

## Advanced GCE Chemistry (Salters) (7887)

## Advanced Subsidiary GCE Chemistry (Salters) (3887)

## MARK SCHEME ON THE UNITS

Unit/Content Page
2848 Chemistry of Natural Resources ..... 1
2849 Chemistry of Materials ..... 6
2850 Chemistry for Life ..... 11
2854 Chemistry by Design ..... 15
Grade Thresholds ..... 20

## 2848 Chemistry of Natural Resources

\begin{tabular}{|c|c|c|c|c|c|}
\hline Mark Scheme Page 1 of 5 \& Unit Code
2848 \& Session January \& \[
\begin{aligned}
\& \text { Year } \\
\& 2008
\end{aligned}
\] \& \& \\
\hline 1 (a) (i) \& \multicolumn{4}{|l|}{\(\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}\) ignore ss} \& 1 \\
\hline (ii) \& \multicolumn{4}{|l|}{\begin{tabular}{l}
\(\mathrm{SiO}_{2}\) giant covalent/ network solid/ lattice/ whole structure held together by covalent bonds/ correct diagram (1); ignore "giant molecule" \\
\(\mathrm{CO}_{2}\) simple molecular/ molecules/ \(\mathrm{O}=\mathrm{C}=\mathrm{O}\) (AW) (1); ignore "covalent" \\
Comparison of imf: Weaker intermolecular forces in \(\mathrm{CO}_{2}\) (can be named and can be abbreviated)/ less energy needed to separate molecules/ bonds in \(\mathrm{SiO}_{2}\) are stronger than \(\mathrm{CO}_{2}\) imfs (1) mention of imf for \(\mathrm{SiO}_{2}\) is CON to third mark
\end{tabular}} \& 3 \\
\hline (b) \& \multicolumn{4}{|l|}{\(395 \times 100 / 1000000=0.0395\) (\%) (1)} \& 1 \\
\hline (c) (i) \& \multicolumn{4}{|l|}{\begin{tabular}{l}
Increased \(\mathrm{CO}_{2}(\mathrm{~g})\) moves equilibrium (position) in equation 1.1 to the right/ more products (1); \\
Increased \(\mathrm{CO}_{2}(\mathrm{aq})\) moves equilibrium (position) in equation 1.2 to the right/ more products (1); Word "equilibrium" must appear at least once here or in introductory sentence to score any of these marks. \(\mathrm{H}^{+}\)concentration/ acidity increases (1) Allow "more \(\mathrm{H}^{+"}\) Just one equilibrium described - max (2).
\end{tabular}} \& 3 \\
\hline (c) (ii) \& \multicolumn{4}{|l|}{\begin{tabular}{l}
One of: \\
Death/ reduced number of/ harm to sea creatures/ plants (1); Dissolving/ removal of seabed minerals (1)
\end{tabular}} \& 1 \\
\hline (d) \& \multicolumn{4}{|l|}{\begin{tabular}{l}
Four from: \\
- Earth emits ir* \\
- \(\mathrm{CO}_{2}\) absorbs ir* \\
- Which causes the bonds to vibrate (more) allow this for other radiations absorbed; \\
- More \(\mathrm{CO}_{2}\) molecules means more radiation is absorbed \\
- This is turned into kinetic energy which raises the temperature/ molecules radiate ir which warms Earth/atmosphere \\
*allow: long-wave or low frequency radiation \\
QWC: Two sentences, spelling (one error allowed), punctuation and grammar correct (1)
\end{tabular}} \& 4

1 <br>
\hline (e) (i) \& \multicolumn{4}{|l|}{Burn less fossil fuels/ alternative power sources (1); Less deforestation/ plant more trees (AW)/ more photosynthesis (1)} \& 2 <br>

\hline (ii) \& \multicolumn{4}{|l|}{| Capture and storage of the gas would need lots of equipment (AW)/ energy/ compression (AW)/ |
| :--- |
| remedying environmental consequences (1) |} \& 1 <br>

\hline \& \multicolumn{4}{|l|}{} \& 17 <br>
\hline
\end{tabular}

| Mark Scheme Page 2 of 5 | Unit Code 2848 | Session <br> January | $\begin{aligned} & \text { Year } \\ & 2008 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 (a) (i) | Alkene (1); <br> Alcohol/ hydroxy(I) (1) |  |  |  | 2 |
| (ii) | $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}$ |  |  |  | 1 |
| (b) (i) | Three (1) |  |  |  | 1 |
| (b) (ii) | One from: <br> Correct orientation of cis/ trans (for trans-cis this must be relative to OH ); must be adjacent(1) allow this marking point if structures not skeletal Completely correct (1); |  |  |  | 2 |
| 2 (c) (i) |  |  |  |  | 1 |
| (ii) | (Potassium/sodium) dichromate/ correct formula (1); <br> (Sulphuric) acid (1); NOT nitric or carboxylic. Allow correct formulae Heat (provided dichromate is given) (1) |  |  |  | 3 |
| (iii) | Oxidation (1) |  |  |  | 1 |
| (d) (i) | (Partially) positively charged/ electron deficient reagent/ attracted to negative charge/ electrons (AW) (1); bonds by accepting a pair of electrons (1) |  |  |  | 2 |
| (ii) |  <br> Correct partial charges on both Br atoms (1); <br> Curly arrow from double bond to $\operatorname{Br}(1)$; must start at double bond and end somewhere in gap <br> Curly arrow from bond to $\operatorname{Br}$ (1) can score (1) for both correct arrows but half heads |  |  |  | 3 |
| (iii) | Carbocation (1) Accept carbonium ion |  |  |  | 1 |
|  |  |  |  |  | 17 |


| Mark Scheme Page 3 of 5 | Unit Code 2848 | Session January | $\begin{aligned} & \text { Year } \\ & 2008 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 (a) (i) |  (or different order) (2); ALLOW brackets and " $n$ ". one error (1) |  |  |  |  |
| (ii) | Copolymer (1) |  |  |  |  |
| (b) |  <br> $\mathrm{C}=\mathrm{O}$ or $\mathrm{C}-\mathrm{OH}$ with corresponding hydrogen bond correctly drawn (1); Lone pair on relevant oxygen, pointed along bond (1); mark separately* <br> Partial charges on relevant atoms (1) mark separately* <br> *if bond is between a hydrogen and an oxygen |  |  |  |  |
| (c) | Strong (hydrogen) bonds/imf (1); <br> idea of less relative movement of chains, eg prevent chains from sliding over one another (1) |  |  |  |  |
| (d) | Sodium/ potassium hydroxide (1) <br> Accept any soluble base ALLOW correct formula |  |  |  |  |
| (e) | Softens/ flows/ melts when heated/ warmed/ easily melted/ low melting IGNORE cross linking |  |  |  |  |
| (f) (i) | Propene (1) ALLOW prop-1-ene |  |  |  |  |
| (ii) | $\begin{aligned} & M_{\mathrm{r}} \text { of repeat unit }=70(1) ; \\ & n=28000 / M_{r}(=400)(1) \end{aligned}$ |  |  |  |  |
| (iii) | Instantaneous (dipole-) induced dipole (or reversed, NOT "temporary")/ <br> Van der Waals (1) |  |  |  |  |
| (iv) | Flexible/ low melting point/ stretches/ thermoplastic/ easily remoulded/ melts above room temp (NOT "solid")/ waterproof/ insulator/ insoluble in water(1) <br> IGNORE malleable, references to boiling point No ecf from incorrect answer to (iii) |  |  |  |  |
|  |  |  |  |  |  |


| Mark Scheme Page 4 of 5 | Unit Code 2848 | Session January | $\begin{aligned} & \text { Year } \\ & 2008 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 (a) (i) | 4.1 (1); (or equation - allow slight copying error) sulphur/ S (1) NOT CuS |  |  |  | 2 |
| (ii) | 4.2 (1); (or equation - allow slight copying error) (2) $\mathrm{NH}_{4}{ }^{+}$ammonium ion (1); <br> It has donated a proton/ $\mathrm{H}^{+}$ion (1) mark separately Allow Lewis acids in 4.3 as follows: <br> 4.3 (only scores if one answer below is correct) <br> $\mathrm{Cu}^{2+}$ (1) electron pair acceptor (1) |  |  |  | 3 |
| (b) (i) | sulphur dioxide dissolves to form an acid (1) ALLOW acid rain which damages trees/ lakes/ fish/ human health/ buildings (1); mark separately |  |  |  | 2 |
| (ii) | Fit 'absorbers'/ scrubbers to the chimney to remove $\mathrm{SO}_{2}$ from waste gases/ making sulphuric acid (1) |  |  |  | 1 |
| (c) (i) | $\mathrm{Cu}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Cu}$ ignore ss <br> Correct formula for zinc ion (1); ALLOW Cu ${ }^{2+}+2 \mathrm{e} \rightarrow \mathrm{Cu}$ for 1 mark Completely correct (1) |  |  |  | 2 |
| (ii) | $\begin{aligned} & 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1} \text { or reversed (2); } \\ & 3 \mathrm{~d}^{4} 4 \mathrm{~s}^{2} \text { (or reversed) scores (1) } \end{aligned}$ |  |  |  | 2 |
| (d) (i) | $\begin{aligned} & 200 \times 0.0500 / 1000=0.01(0)(2) ; \\ & 200 \times 0.05(00) \text { or } 200 / 1000(1) \end{aligned}$ |  |  |  | 2 |
| (ii) | Mass Cu $=0.01 \times 63.5$ (1) ( $=0.635 \mathrm{~g}$ ) ecf from d(i) <br> $\% \mathrm{Cu}=$ answer to first marking point $\mathrm{x} 100 / 0.80(=79.375)$ allow any sf (1) <br> 79 (1) allow any answer to 2sf provided the number is the result of some calculation |  |  |  | 3 |
|  |  |  |  |  | 17 |

\begin{tabular}{|c|c|c|c|c|c|}
\hline Mark Scheme Page 5 of 5 \& Unit Code
2848 \& Session January \& \[
\begin{aligned}
\& \text { Year } \\
\& 2008
\end{aligned}
\] \& \& \\
\hline 5 (a) \& \multicolumn{4}{|l|}{Bromoalkanes/ halogenoalkanes/ haloalkanes (1)} \& 1 \\
\hline (b) \& \multicolumn{4}{|l|}{crude oil/ natural gas/ (sea)water/ brine (1)} \& 1 \\
\hline (c) (i) \& \multicolumn{4}{|l|}{\[
\begin{aligned}
\& \mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-} \\
\& \text {completely correct (2) } \\
\& \text { all formulae correct (1) ALLOW } 2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \text { e for } 1 \text { mark (or minus } \\
\& \text { electrons) }
\end{aligned}
\]} \& 2 \\
\hline (ii) \& \multicolumn{4}{|l|}{\begin{tabular}{l}
+4 (1) \\
+6 (1) (1) for \(4+, 6+\) or \(4,6\). \\
Oxidised because oxidation state has increased (1) mark separately IGNORE loss of electrons
\end{tabular}} \& 3 \\
\hline (iii) \& \multicolumn{4}{|l|}{\[
\begin{aligned}
\& 0.07 / 80(1) \text {; } \\
\& =9 \times 10^{-4} \text { ALLOW } 8.75 \times 10^{-4} / 8.8 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}(1) \text { no ecf from } 1 \text { st } \\
\& \mathrm{mpt}
\end{aligned}
\]} \& 2 \\
\hline (iv) \& \multicolumn{4}{|l|}{0.81/ Answer from (c) (iii) (= 900) (1)} \& 1 \\
\hline (v) \& \multicolumn{4}{|l|}{Red/brown/ red-brown (1)} \& 1 \\
\hline (d) (i) \& \multicolumn{4}{|l|}{\(\mathrm{CH}_{3} \mathrm{OH}+\mathrm{HBr}(1) \rightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O}\) (1) allow BrH etc} \& 2 \\
\hline (ii) \& \multicolumn{4}{|l|}{\begin{tabular}{l}
Nucleophilic (1); \\
Substitution (1)
\end{tabular}} \& 2 \\
\hline (e) \& \multicolumn{4}{|l|}{\begin{tabular}{l}
A catalyst provides (an alternative route for the reaction that has) a lower activation enthalpy (1); \\
The activation enthalpy is the energy needed for a collision to result in a reaction (1); mark separately more effective collisions/ more collisions will occur with greater than the activation enthalpy/ more successful collisions (1) NOT in context of more energy/greater temperature
\end{tabular}} \& 3 \\
\hline (f) \& \multicolumn{4}{|l|}{\begin{tabular}{l}
Up to four from: \\
CFCs are not broken down/ unreactive in the troposphere (1); \\
CFCs are broken down in the stratosphere (AW) (1); \\
by high energy/ frequency uv/ radiation (1); \\
producing chlorine atoms/ radicals (1); or equation \\
that catalyse ozone breakdown (1) or implied \\
plus up to two from: \\
\(\mathrm{C}-\mathrm{Br}\) bond is weaker (than \(\mathrm{C}-\mathrm{Cl}\) ) (1); \\
so can be broken in the troposphere/ molecule reacts in the \\
troposphere (1); \\
or \\
Bromomethane contains \(\mathrm{C}-\mathrm{H}\) bonds that are weaker (than \(\mathrm{C}-\mathrm{Cl})(1)\); \\
so can be broken in the troposphere/ molecule reacts in the \\
troposphere (1) \\
QWC: Two sentences, logical, at least two terms from this list, used correctly: \\
Troposphere/ stratosphere, uv, radiation, catalyse/ catalyst/ catalytic, homolytic fission, photodissociation, radical. Place dots over words
\end{tabular}} \& 5

1 <br>
\hline \& \& \& \& \& 24 <br>
\hline
\end{tabular}

## 2849 Chemistry of Materials

| Mark Scheme Pages 1 of 5 | $\begin{gathered} \hline \text { Unit Code } \\ 2849 \end{gathered}$ | Session Jan | $\begin{aligned} & \hline \text { Year } \\ & 2008 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question | Expected answers |  |  |  | Marks |
| 1 (a) | Will not hydrolyse when in contact with aqueous solutions AW/ Tough, will not break inside bodies AW (1). |  |  |  | 1 |
| (b) |  |  |  |  | 1 |
| (c) (i) | (Moderately) concentrated hydrochloric acid/moderately concentrated sulphuric acid (1); <br> (Heat under) reflux (1). |  |  |  | 2 |
| (ii) |  |  |  |  | 2 |
| (iii) | Any five from: <br> Dissolve solid in minimum amount of (1); hot ethanol (1); <br> leave to cool/evaporate (1); <br> filter off crystals (1); <br> wash with cold ethanol (1); <br> dry (1); <br> QWC (1). |  |  |  | 6 |
| (d) | Cis structures will make chains less regular/chains in Cis-Trans further apart ORA AW (1); <br> so packing will be less regular, hence less crystalline ORA AW (1); intermolecular forces will be weaker (1); <br> so m.pt. is lower in cis-trans mixture ORA (1). |  |  |  | 4 |
| (e) (i) | Hydroxyl/alcohol; |  |  |  | 1 |
| (ii) | peak at about 3300 (any suitable range) $\mathrm{cm}^{-1}$ /wavenumber indicates OH bond (1). |  |  |  | 1 |
| (f) | Add other monomers to the chain/copolymerisation AW; add plasticisers (1); <br> allow introduce some cis bonds to lower m.pt if polymers show geometrical isomerism. |  |  |  | 1 |
| Total mark |  |  |  |  | 19 |



| Mark Scheme Page 3 of 5 | Unit Code $2849$ | Session Jan | $\begin{aligned} & \text { Year } \\ & 2008 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question | Expected answers |  |  |  | Marks |
| 3 (a) | 0.78 V (1). |  |  |  | 1 |
| 3 (b) | EITHER: <br> People using the ancient iron-copper cell did not do their experiments under standard conditions including an example AW (1); <br> Electrode potentials/E ${ }^{0}$ cell will be different under different conditions AW (1). OR <br> Solution is acid not metal ions / solution contains acid AW (1); <br> Different reactions take place at the electrodes/ hence electrode potentials will be different AW (1); |  |  |  | 2 |
| 3 (c) | ```Copper is the negative electrode = FALSE ; Copper atoms are oxidised in the reaction = FALSE; Electrons move through the wire from the copper electrode = FALSE; Electrons do not move through the solution = TRUE; all four correct (2); any two correct (1).``` |  |  |  | 2 |
| 3 (d) | Hydrogen electrode (gas, acid, Pt) (1); voltmeter connected to electrodes (1); <br> salt bridge dipping in both solutions (include $\mathrm{Cu}^{2+}$ half-cell) and labelled (1); standard conditions, two from: $1 \mathrm{~mol} \mathrm{dm}^{-3}, 298 \mathrm{~K}, 1$ atmosphere (1). |  |  |  | 4 |
| 3 (e) | $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})$ <br> Species correct (1); balanced and direction correct ignore electrons not cancelled (1); state symbols correct (1). |  |  |  | 3 |
| 3 (f) | Yes, Cu is a stronger reducing agent than $\mathrm{Fe}^{2+}$ ions since Cu has more negative electrode potential (2) AW ORA <br> 1 mark only if either redox property (in terms of redox words or electron transfer) or electrode potential data is given in the answer. |  |  |  | 2 |
| 3 (g) (i) |   <br> 1 mark each <br> DO NOT ALLOW -OH. |  |  |  | 2 |
| 3 (g) (ii) | Acidity is caused by loss of protons/ $\mathrm{H}^{+}$/dissociation of molecule (1); (strength of acid/equilibrium position) depends on stability of anion AW COMPARISON MARK (1); <br> anion from ethanoic acid can delocalise the negative charge and is more stable (1); <br> $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$is not stabilised/charge not delocalised AW (1). |  |  |  | 4 |
| Total mark |  |  |  |  | 20 |




## 2850 Chemistry for Life




| Mark Scheme Page 3 of 4 | $\begin{aligned} & \text { Unit Code } \\ & 2850 \end{aligned}$ | Session January |  | $\begin{aligned} & \text { Year } \\ & 2008 \end{aligned}$ | Version Final |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 (a) (i) | $\mathbf{2 B}(\mathbf{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathbf{g}) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathbf{s})+3 \mathrm{H}_{2}(\mathbf{g})$ balancing, allow multiples(1); states(1); |  |  |  |  | 2 |
| (ii) | $\mathrm{B}_{2} \mathrm{O}_{3}+3 \mathrm{Mg} \rightarrow 3 \mathrm{MgO}+2 \mathrm{~B}\left(\right.$ not $\left.\mathrm{B}_{2}\right)$ reactants \& products(1); balancing based on products of magnesium oxide and boron(1) |  |  |  |  | 2 |
| (b) (i) | moles of $\mathrm{H}_{2}=5000 / 2(2500)(1)$; |  |  |  |  |  |
| (ii) | moles of $B=2 / 3$ of $\mathrm{H}_{2}(1666.6)$ this mark for use of their(ecf) eqn. to get ratio (1); 1666.6 ecf on their eqn $\times 11(18300)(1) ; \rightarrow 20 / 18.3 / 18 \frac{1}{3} \mathrm{~kg}(1)$ ecf's |  |  |  |  | 3 |
| (iii) | $2500 \times 286$ (715000 kJ) ecf |  |  |  |  |  |
| (c) (i) | $\begin{aligned} & 2 \mathrm{NO}+2 \mathrm{CO} \rightarrow \mathrm{~N}_{2}+2 \mathrm{CO}_{2} \text { formulae (1); balancing (independent) } \\ & \text { providing reactants correct(1) } \\ & \text { eg NO }+\mathrm{CO} \rightarrow \mathrm{~N}+\mathrm{CO}_{2} \ldots \ldots \ldots . \text { gets } 1 \text { mark } \end{aligned}$ |  |  |  |  | 2 |
| (ii) | Reactants adsorbed or bonded/chemisorbed on catalyst surface AW (1); absorbed CON <br> Bonds in reactants (weaken and) break (1); NOT bonds between reactants <br> New bonds form in product/new molecules (1); <br> Desorbed/diffuse off surface AW (1); NB last or first two pairs reversed only 1 mark in either pair <br> (Diagrammatic acceptable) |  |  |  |  | 4 |
| (iii) | No CO (1); BOD $\mathrm{H}_{2} \mathrm{O}$ won't react with NO Not unreacted hydrogen will not react with NO |  |  |  | 1 |  |
| (d) | Advantages <br> No CO/C emissions/only produces water/no pollutants (if qualified)/less pollutants/renewable/high energy density/plentiful supply/less use of fossil fuels(AW) (1); Not NO reduced Disadvantages storage issues (BOD liquefied)/delivery system (1) NOT NO not reduced |  |  |  | 2 |  |
| (e) | same group (of PT)/same outer electron structure(1); reacts in a similar way/similar properties AW (1); in same period therefore reacts in similar way CON..zero. |  |  |  | 2 |  |
|  |  |  |  |  | Total $=20$ |  |


| Mark Scheme Page 4 of 4 | $\begin{aligned} & \text { Unit Code } \\ & 2850 \end{aligned}$ | Session January | $\begin{aligned} & \text { Year } \\ & 2008 \end{aligned}$ | Version <br> Final |
| :---: | :---: | :---: | :---: | :---: |
| 4 (a) (i) | alkane(s) NOT 'linear' alkanes |  |  | 1 |
| (ii) | 3-ethyl-2-methylheptane heptane (NOT cycloheptane)(1); all correct(ignore dashes and commas) (1); |  |  | 2 |
| (iii) | A and C only(1); same molecular formulae/same number and type of atoms/same atoms(1); different structural/structure/arrangement of atoms(1); NOT different shape or chemical formulae |  |  | 3 |
| (iv) | $\mathrm{C}_{15} \mathrm{H}_{32}$ carbons(1); hydrogens(1); |  |  | 2 |
| (v) | B (1); |  |  | 1 |
| (b) (i) | D |  |  | 1 |
| (ii) | A or/and C ( A and D or A,C and D CON) |  |  | 1 |
| (c) | more efficient/more power generated/reduces/lowers tendency(1); knock/pre-ignition/autoignition (1); NOT no or prevents auto ignition. |  |  | 2 |
| (d) (i) | 1000/170(1); x 8062 ecf on some attempt to calculate moles (BOD)(1); sig figs(1) only scores if some working; 47,000 scores all three. Ignore minus sign |  |  | 3 |
| (ii) | 108000/47000 $=2.3(1)$ ecf from (i) |  |  | 1 |
| (iii) | ensures complete combustion; |  |  | 1 |
|  |  |  |  | Total $=18$ |

## 2854 Chemistry by Design

| Mark Scheme Page 1 of 5 | Unit Code 2854 | Session January | $\begin{aligned} & \hline \text { Year } \\ & 2008 \end{aligned}$ | Versi Fina |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \begin{array}{ll}1 & \text { (a) (i) }\end{array}$ | $\mathrm{CH}_{3} \mathrm{OH}+0.5 \mathrm{O}_{2}=\mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O}$ or doubled |  |  |  | 1 |
| (ii) |  |  |  |  | 1 |
| (b) (i) | greater yield (1); equilibrium (position) moves to oppose change/ moves in endothermic direction (1) mark separately |  |  |  | 2 |
| (ii) | smaller yield (1); <br> equilibrium (position) moves in direction of fewer molecules (1) mark separately |  |  |  | 2 |
| (c) (i) | $\mathrm{pH}_{2}(\mathrm{x}) \mathrm{pHCHO} / \mathrm{pCH}_{3} \mathrm{OH}$ (1) atm (1) allow square brackets IF "p" as well |  |  |  | 2 |
| (ii) | $\mathrm{p}=\mathrm{K}_{\mathrm{p}} \times \mathrm{pCH}_{3} \mathrm{OH} / \mathrm{pH}_{2}$ (or substituted) (1) ecf from incorrect answer to c $i$ $=6.4(4) \times 10^{-3}$ (1) ecf from first marking point. Correct answer from (c)(i) scores 2. |  |  |  | 2 |
| (d) (i) | $\mathrm{NaBH}_{4}$ or correct name; otherwise ignore name |  |  |  | 1 |
| (ii) | nucleophilic (1); addition (1) |  |  |  | 2 |
| (e) | $\begin{aligned} & 15-\mathrm{CH}_{3}^{+} \\ & 28-\mathrm{CO}^{+} \\ & \left.29-\mathrm{CHO}^{+} \text {(accept } \mathrm{COH}^{+}\right) \\ & 30-\mathrm{CH}_{2} \mathrm{O}^{+} \\ & 31-\mathrm{CH}_{3} \mathrm{O}^{+} \\ & 32-\mathrm{CH}_{4} \mathrm{O}^{+} / \mathrm{CH}_{3} \mathrm{OH}^{+} \\ & 33-\mathrm{C}^{13} \mathrm{H}_{4} \mathrm{O}^{+} / \mathrm{C}^{13} \mathrm{H}_{3} \mathrm{OH}^{+} \\ & \text {Allow } \mathrm{C}, \mathrm{H}, \mathrm{O} \text { in any order for all } \\ & \text { any two: (1) each; + sign (1) award if ONE ion correct } \\ & \hline \end{aligned}$ |  |  |  | 3 |
|  |  |  |  |  | 16 |


| Mark Scheme Page 2 of 5 | Unit Code 2854 | Session January | $\begin{aligned} & \hline \text { Year } \\ & 2008 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question | Expected Answers |  |  |  | Marks |
| 2 (a) (i) | reduce knocking/reduce pre-ignition/raise octane rating/cause more complete/efficient combustion (AW)/ make more combustible/ provides more oxygen for combustion |  |  |  | 1 |
| (ii) | ether <br> using $M_{\mathrm{r}}=88$ to convert solubility to $\mathrm{g} \mathrm{dm}^{-3}(44)$ or lowest concentration to mol dm ${ }^{-3}\left(4.5 \times 10^{-8}\right)(1)$; <br> ratio $=1(.1) \times 10^{7}: 1 / 1: 1(.1) \times 10^{7}$ Allow $1: 9 / 9.09 / 9.1 \times 10^{-8} / 9 / 9.09 / 9.1 \times$ $10^{-8}: 1$ Allow ecf <br> 1 sf provided some calculation (1) |  |  |  | 1 |
| (b) |  |  |  |  | 3 |
| (c) (i) | structural/functional group |  |  |  | 1 |
| (ii) | 2-methylbutan-2-ol (2); ignore dashes and gaps. omission of either or both " 2 " scores 1. (1,1)dimethylpropan-1-ol scores 1 |  |  |  | 2 |
| (iii) | four from: <br> MTBE has permanent dipole-permanent dipole /instantaneous dipoleinduced dipole allow abreviations; <br> compound A has hydrogen bonding; <br> because it has an O-H group/ is an alcohol; <br> hydrogen bonds are stronger (than permanent dipole-permanent dipole/i-d-i- <br> d) ora; <br> more energy is required to separate the molecules/ boil compound A |  |  |  | 4 |
| (iv) | (sulphuric) acid potassium dichromate/dichromate* or correct formulae (1); heat/ reflux depends on dichromate (name or formula) being mentioned (1); <br> turns green (1); <br> compound $A$ is a tertiary alcohol or description (1) <br> * or dichromate(VI), other oxidation numbers are CON |  |  |  | 4 |
| (d) (i) | alkene |  |  |  | 1 |
| (ii) | 4 ex 5: each arrow and each charge (if single headed arrows, allow second and subsequent appearances); extra arrows or charges are CON to the mark for the molecule concerned |  |  |  | 4 |
| (iii) | addition (1) electrophilic (1) |  |  |  | 2 |
| (iv) | $\mathrm{H}^{+}$(1); recycled/ goes in at start, out at end (AW) (1) mark separately |  |  |  | 2 |
| (e) | nmr: two from: two environments/ratio $1: 3 / \mathrm{CH}_{3} \mathrm{C}$ at $1.2, \mathrm{CH}_{3}-\mathrm{O}$ at 3.2 ignore O-H; <br> relate to compounds: not $\mathrm{D} /$ it is MTBE or C (from environments.)/ MTBE from ratio (1) <br> ir: no O-H (ignore references to $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{H}$ ) (1) <br> relate to compounds: not C/it is MTBE or D/ MTBE to confirm nmr (1) <br> MTBE must be named as the compound to score the fifth mark |  |  |  | 5 |
|  |  |  |  |  | 30 |


| Mark <br> Scheme <br> Page 3 of 5 | Unit Code 2854 | Session January | $\begin{aligned} & \text { Year } \\ & 2008 \end{aligned}$ | Versio Final |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 (a) (i) | nitrogen/ air(1); methane/ natural gas (1); water/steam (1) |  |  |  | 3 |
| (ii) | $\mathrm{NH}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}$ |  |  |  | 1 |
| (iii) | $\mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}$or with $\mathrm{H}_{2} \mathrm{O}$ to form $\mathrm{H}_{3} \mathrm{O}^{+}$ |  |  |  | 1 |
| (b) |  |  |  |  | 2 |
| (ii) | $109\left({ }^{\circ}\right)$ (1); 4 electron pairs/ bonds/ areas of electron density (AW) no ecf (1); repel and get as far away from each other as possible (1) |  |  |  | 3 |
| (iii) | soluble in water (1); ions attract water molecules/ ions are hydrated (1); <br> conducts electricity in solution (1); ions free to move (1) allow second mark if "conducts when molten" given <br> QWC: written in sentences (at least two) only one spelling, punctuation or grammatical error (see notes) |  |  |  | 4 1 |
| (c) | $\mathrm{NH}_{4} \mathrm{NO}_{3}=80$ (1) \% $=28 \times 100 / 80=35 \% \operatorname{ecf}(1)$ |  |  |  | 2 |
| (d) | two from: <br> nitrogen/nitrates/ammonia/ammonium needed by plants (AW); soluble; high \% nitrogen; $\mathrm{NH}_{4}{ }^{+}$held by clay/soil |  |  |  | 2 |
| (e) (i) | equilibrium sign ALLOW some description of reaction not going to completion |  |  |  | 1 |
| (ii) | $\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{NH}_{4}^{+}\right]$completely correct |  |  |  | 1 |
| (iii) | $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\left[\mathrm{NH}_{4}^{+}\right] \text {stated or implied (1) }} \\ & {\left[\mathrm{H}^{+}\right]=2.37 / 2.4 \times 10^{-6}(1) ;} \end{aligned}$ |  |  |  | 2 |
| (iv) | $\mathrm{pH}=5.6 / 5.62 / 5.63$ ecf from some calculated value in 3 e iii |  |  |  | 1 |
| (f) (i) | any soluble ammonium salt (1) <br> ammonia (solution) / ammonium hydroxide/ $\mathrm{NH}_{3} / \mathrm{NH}_{3}(\mathrm{aq})$ (1) |  |  |  | 2 |
| (ii) | $\begin{aligned} & {\left[\mathrm{NH}_{4}^{+}\right]=\left[\mathrm{NH}_{3}\right] \text { so }\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}}(1) ; \mathrm{pH}=\left(-\log \left(5.6 \times 10^{-10}\right)=9.25 / 9.3\right.} \\ & \left(\text { If }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \text { used in 3fi, then allow this answer or }\left[\mathrm{H}^{+}\right]=2 K_{\mathrm{a}} ; \mathrm{pH}=\right. \\ & \text { 8.95/9.0) } \end{aligned}$ |  |  |  | 2 |
|  |  |  |  |  | 28 |

\begin{tabular}{|c|c|c|c|c|c|}
\hline Mark Scheme Page 4 of 5 \& Unit Code
2854 \& Session January \& \[
\begin{aligned}
\& \hline \text { Year } \\
\& 2008
\end{aligned}
\] \& \& \\
\hline 4 (a) (i) \& \multicolumn{4}{|l|}{nitrobenzene allow 1-nitrobenzene/ nitro-benzene/ nitro benzene} \& 1 \\
\hline (ii) \& \multicolumn{4}{|l|}{\begin{tabular}{l}
conc sulphuric acid (1); conc nitric acid (1); conc (allow "c.") only needs to be mentioned once - nitric acid and sulphuric acid (no conc) score (1) \\
below \(55^{\circ} \mathrm{C}\) (1) reflux is "CON"
\end{tabular}} \& 3 \\
\hline (iii) \& \multicolumn{4}{|l|}{\(\mathrm{Sn}+\mathrm{c}, \mathrm{HCl}\) reflux (1)} \& 1 \\
\hline (iv) \& \multicolumn{4}{|l|}{\(\mathrm{C}_{6} \mathrm{H}_{14}=\mathrm{C}_{6} \mathrm{H}_{6}+4 \mathrm{H}_{2}\) hexane formula (1) balanced equation for the reaction of a hydrocarbon producing \(\mathrm{H}_{2}\) and benzene(1)} \& 2 \\
\hline (b) (i) \& \multicolumn{4}{|l|}{\(\mathrm{AlCl}_{3}\) (1); anhydrous/reflux (1)} \& 2 \\
\hline (ii) \& \multicolumn{4}{|l|}{(neutral) iron(III) (chloride) (1); purple/ pink/ mauve/ violet (1) mark separately, ignore starting colour} \& 2 \\
\hline (iii) \& \multicolumn{4}{|l|}{use of ratio 78/94 (either way up) (1) 87\% (1) ecf} \& 2 \\
\hline (c) (i) \& \multicolumn{4}{|l|}{alkaline solution (1); below \(5{ }^{\circ} \mathrm{C}\) (1)} \& 2 \\
\hline (ii) \& \multicolumn{4}{|l|}{} \& 2 \\
\hline (d) \& \multicolumn{4}{|l|}{larger chromophore/ lone pair on nitrogen (involved in delocalisation)/ more delocalisation / \(\mathrm{NH}_{2}\) group} \& 1 \\
\hline (e) \& \multicolumn{4}{|l|}{\begin{tabular}{l}
benzene absorbs uv/ does not absorb visible (1); four from: \\
dye absorbs in visible; transmits complementary colour; electrons excited/ move to higher energy levels; more delocalisation in dye/ longer chromophore; less energy needed for excitation/ energy levels closer; \((\Delta) \mathrm{E}=\mathrm{hv} /\) frequency is proportional to energy change; max two ex four for emission of light QWC: Logical, with three words from list below used correctly: (2) Logical with two words from list below used correctly (1) absorbs; transmits; visible; uv; electrons excited; delocalisation; chromophore; (electron) energy level, complementary
\end{tabular}} \& 5

2 <br>
\hline \& \& \& \& \& 25 <br>
\hline
\end{tabular}

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Mark } \\ \text { Scheme } \\ \text { Page } \mathbf{5} \text { of } \mathbf{5}\end{array} & \begin{array}{l}\text { Unit Code } \\ \mathbf{2 8 5 4}\end{array} & \begin{array}{l}\text { Session } \\ \text { January }\end{array} & \begin{array}{l}\text { Year } \\ \text { 2008 }\end{array} \\ \hline \mathbf{5} \text { (a) } \\ \text { Final }\end{array}\right]$

## Grade Thresholds

Advanced GCE Chemistry (Salters) (3887/7887)
January 2008 Examination Series
Unit Threshold Marks

| Unit |  | Maximum <br> Mark | a | b | c | d | e | $\mathbf{u}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 8 4 8}$ | Raw | 90 | 70 | 62 | 54 | 46 | 39 | 0 |
|  | UMS | 120 | 96 | 84 | 72 | 60 | 48 | 0 |
| $\mathbf{2 8 4 9}$ | Raw | 90 | 68 | 60 | 53 | 46 | 39 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| $\mathbf{2 8 5 0}$ | Raw | 75 | 57 | 50 | 43 | 37 | 31 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |
| $\mathbf{2 8 5 4}$ | Raw | 120 | 84 | 75 | 66 | 58 | 50 | 0 |
|  | UMS | 120 | 96 | 84 | 72 | 60 | 48 | 0 |
| $\mathbf{2 8 5 5}$ | Raw | 90 | 76 | 68 | 60 | 52 | 44 | 0 |
|  | UMS | 90 | 72 | 63 | 54 | 45 | 36 | 0 |

## Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

|  | Maximum <br> Mark | A | B | C | D | E | U |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 8 8 7}$ | 300 | 240 | 210 | 180 | 150 | 120 | 0 |
| $\mathbf{7 8 8 7}$ | 600 | 480 | 420 | 360 | 300 | 240 | 0 |

The cumulative percentage of candidates awarded each grade was as follows:

|  | A | B | C | D | E | U | Total Number of <br> Candidates |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 8 8 7}$ | 12.2 | 35.3 | 61.1 | 82.3 | 96.4 | 100 | 569 |
| $\mathbf{7 8 8 7}$ | 15.0 | 48.8 | 75.0 | 92.5 | 98.8 | 100 | 84 |

## 653 candidates aggregated this series

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

# OCR (Oxford Cambridge and RSA Examinations) 

1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

## www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

